Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution.
نویسندگان
چکیده
Granule cell dispersion is a characteristic feature of Ammon's horn sclerosis in temporal lobe epilepsy. It was recently shown that granule cell dispersion is associated with decreased expression of the extracellular matrix protein Reelin. Reelin controls neuronal lamination and the differentiation of dendrites and spines. Here, we studied dendritic orientation and the distribution of dendritic spines on granule cells in surgical specimens of patients suffering from temporal lobe epilepsy. In this material, we compared granule cells in dentate areas showing granule cell dispersion with granule cells in areas exhibiting a normal, densely packed granule cell layer. Granule cells (GC) were Golgi-stained and analyzed using a computer-based camera lucida system and were categorized as being located proximal or distal to the hilus (GCprox, GCdist). We found that GCprox in a densely packed granule cell layer exhibited a mainly vertically oriented dendritic arbor with a small bifurcation angle (17°) between branching dendrites. In contrast, GCdist in a densely packed granular layer showed a wider bifurcation angle (35°), suggesting a widening of the dendritic field during the migratory process to superficial positions. Granule cells in the dispersed granule cell layer showed an even wider bifurcation angle of their apical dendrites (GCprox: 40°; GCdist: 58°) and also exhibited recurrent basal dendrites. Spine density on dendrites of GCprox in dispersed areas was increased compared to GCprox in the normal, compact granule cell layer. In contrast, dendrites of GCdist extending into the molecular layer showed a reduced spine density in dispersed areas. The results are discussed in view of other findings on neuronal reorganization in the epileptic dentate gyrus.
منابع مشابه
Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus
Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, m...
متن کاملSomatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion.
Pronounced neuronal remodeling is a hallmark of temporal lobe epilepsy. Here, we use real-time confocal imaging of tissue from mouse brain to demonstrate that remodeling can involve fully differentiated granule cells following translocation of the soma into an existing apical dendrite. Somatic translocation converts dendritic branches into primary dendrites and shifts adjacent apical dendrites ...
متن کاملReelin Signalling Pathway and Mesial Temporal Lobe Epilepsy: A Causative Link?
Mesial temporal lobe epilepsy (MTLE) is the most frequent form of partial epilepsy. Granule cell dispersion, resulting from aberrant neuronal migration in the hippocampus, is pathognomonic of MTLE. Reelin, a secreted neurodevelopmental glycoprotein has a crucial role in controlling the radial migration of neurons. Several animal studies have implicated Reelin in the MTLE pathogenesis. The aim o...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملIncreased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures.
We have previously shown that, in HEK 293 cells, overexpression of acidic calponin, an actin-binding protein, induces remodeling of actin filaments, leading to a change in cell morphology. In addition, this protein is found in dendritic spines of adult hippocampal neurons. We hypothesized that this protein plays a role in regulating actin-based filaments during dendritic spine plasticity. To as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 229 2 شماره
صفحات -
تاریخ انتشار 2011